Prepared
for World Triathlon Corporation by Dr. Brian Abelson and Active Release
Techniques. Click here to return to Ironmanlive.com |
Improving
Core Stability
with Active Release Techniques
By Dr. Brian Abelson DC. Calgary, Alberta, Canada
http://www.drabelson.com/
https://activerelease.ca/
In this article
Imbalances affect
performance and lead to injury
Why exercise alone
does not correct core imbalances
Addressing
core stability with ART
About Active Release
Techniques
Training long hours does
not guarantee that you have core stability.
In fact, spending too much time working within one plane of motion often
creates core imbalances. Add these imbalances
to stresses caused by poor posture during running, and the repetitive motions
of swimming, and you have an equation for the development of a weak core.
Often the athlete tries to
correct these imbalances by heading to the gym to strengthen weakened
areas. Unfortunately, since many weight
machines only work through one plane of motion (usually sagittal), these
strengthening exercises only reinforce core instability.
Optimum posture is based on
the attainment of a balance between primary muscle movers and their opposing
muscles. This is referred to as a force
coupled relationship when muscles act in opposition to each other to
create a movement. An imbalance is
created when one muscle group is overworked in comparison to its opposing
structure.
Most cyclists focus on their hamstrings, quadriceps, and gluteals and forget about the importance of core stability. Consider how many hours the triathelete spends bent over in a flexed position on the aero bars, with no rotational or side bending motions. A strong core is needed to counter-balance these forces.
With a focus on the core, a cyclist can generate more power and can sustain a higher level of intensity for longer periods. A stronger core also means less stress on the primary muscle movers and a delay in the build up of lactic acid. |
Even minor changes such as brake position can affect core stability. If the brake handle position is too low, the cyclist is forced to reach too far forward with their forearms. This reaching position forces the cyclist to raise their head forcing the pelvic girdle posterior. This position cause a restriction in several key muscles in the core, thus reducing performance. The ideal position for the forearms is to have the elbows bent and the forearms flattened out. In this position, the cyclist head drops into a more comfortable aerodynamic position, and the pelvis tilts forward. In this position, the cyclist is able to use all the core muscles with improved efficiency. |
Consider how the chronic
shortening of just one muscle can affect performance and cause injuries. There are multitude of different muscle
groups we could focus on, but for our example we will chose the rectus
abdominus muscle.
The rectus abdominus is often shortened by doing crunches, hanging leg raises, or by spending an excessive amount of time bent over the aero bars. The rectus abdominus attaches from the fifth to the seventh ribs. As this muscle shortens, it has the effect of: Pulling the chest down and moving the shoulders and head forward. As the shoulders move forward, the arms and hands move inward (also called medial rotation). If we follow the kinetic chain, what started as a shortening of an abdominal structures ends up affecting posture, shoulder rotation, arm position, and even the positioning of the hands. |
Now consider how a
shortened rectus abdominus affects a triatheletes performance during
running. Although opinions about the ideal running form vary greatly,
most authorities will agree that the less energy you expend, the more effective
your running style.
The following table illustrates
how an imbalance in the rectus abdominus decreases the runners ability
to run efficiently.
Common running recommendations |
How a shortened rectus abdominus affects
your running |
Run upright. Your back should be straight, roughly at a 90-degree angle to the ground. Look straight ahead. Your eyes
should be focused straight down the road on a point moving about 10 meters in
front of you. This helps to keep you in a straight line. Swing your arms naturally. The
angle at the elbow between your upper and lower arms should be about 90
degrees. Your hands should be loosely cupped, about belly level. |
A shortened rectus abdominus will pull the runners posture forward. This causes a braking action that reduces running economy. As the rectus is shortened, it pulls the chest forward and pushes the head down. In order to look straight ahead as instructed, the athlete wastes a considerable amount of force in trying to overcome the contracted rectus abdominus. As the shoulders move forward, a
shortened rectus abdominus causes the arms to rotate internally. This makes
keeping your arms relaxed at the recommended 90-degree angle much more
difficult, again reducing running economy. |
As this example shows, by
following the kinetic chain, it is not hard to see how one shortened muscle
soon affects numerous aspects of the athletes performance. This is only one example. When performing a
biomechanical analysis, it is very common to see numerous imbalances of which
the athlete is completely unaware.
Many effective exercises can help correct core stability imbalances. Some of the best exercises include Swiss Balls, wobble boards, and foam rollers in combination with exercises that combine strength, flexibility, and address all planes of motion. However, it is still common to see triatheletes who continue to have
numerous imbalances and problems with core stability even when they are
carrying out excellent exercise programs, using all the right exercises, and
working in all planes of motion. |
This is because these exercises
do not address one very important issue - soft tissue adhesions that
formed due to muscles imbalances.
Soft tissue imbalances
coupled with the repetitive motion of constant training causes the body to lay
down restrictive adhesive tissue that binds soft tissues structures (muscle, ligaments, tendons, fascia, nerves, and
circulatory structures) together.
These restrictions cause a
considerable amount of internal pressure within the tissue. This pressure leads
to friction and inflammation, and eventually the formation of additional layers
of adhesions or scar tissue.
The athlete can never
achieve full core stability, flexibility, and strength until these adhesions
and restrictive connections are removed. Attempts to strengthen muscles bound by adhesions often cause the
structure to become more restricted, which in turn causes additional tension
within the soft tissue, which then cause further imbalances that decrease
performance and cause injury.
About Inflammation and
Adhesions
The body responds to
inflammation by laying down scar tissue (cross fibers across the tissue) in an
attempt to stabilize the affected area. This scar tissue:
Restricts motion.
Reduces circulation.
Inhibits nerve function.
Causes ongoing friction and pressure.
Results in the production of yet more cross fibers and adhesions across inflamed soft tissues (The Repetitive Injury Cycle, Copyright Dr. Mike Leahy)
The first steps in dealing
with issues of core stability should be the analysis, identification and
treatment of restrictions that inhibit motion. Active Release Technique is
specifically designed to do just this.
ART practitioners start the
procedure by performing a specific biomechanical analysis of the athletes
motion. This analysis is used to
determine where specific restrictions are located along their entire kinetic chain.
Your core area is the first place an ART practitioner will evaluate. After evaluation, appropriate ART protocols
are then applied to remove restrictions and restore or improve function.
ART treatments are specific
and based upon the individual needs of each athlete. ART does not use a
cookbook approach to treating a non-specific diagnosis.
ART® finds the specific
tissues that are restricted and physically works them back to its normal
texture, tension, and length by using various hand positions and soft tissue
manipulation methods.
Effective treatment of any
soft tissue restriction requires an alteration in tissue structure that breaks
up the restrictive cross-fibre adhesions and restores normal function to the
affected soft tissue areas. When executed properly, this process treats the
root cause of the injury, and improves athletic performance.
You can find a qualified
ART provider by visiting the official Active Release Techniques website at. www.activerelease.com. You can also
call ART headquarters at 1-888-396-2727. At your next Ironman race, look for
the ART Performance Care tent. Our soft tissue experts are available to help
you reach your full potential.
ART Performance Care .Perform at your best.
Dr. Brian
Abelson DC, ART
https://activerelease.ca/
http://www.drabelson.com/
Copyright: Dr. Brian Abelson 2003. All rights reserved.
Dr. Brian Abelson is Clinical Director of Edgemont
Chiropractic Clinic. Dr. Abelson is a native Calgarian who graduated from
Palmer College of Chiropractic West with an award for clinical excellence,
holds a Level 3 Active Release Certification, and is an ART Assistant Instructor. He is also the author of the award winning
websites: http://www.drabelson.com/ and www.activerelease.ca . Author: Dr. Brian Abelson Editor: Kamali Abelson, Rowan Tree Consulting Ltd. Edgemont Chiropractic Clinic Bay #10, 34 Edgedale Drive N.W. Calgary,
Alberta, T3A-2R4 |